Contents 1 Terminology 2 Causes 2.1 Internal forcing mechanisms 2.1.1 Ocean-atmosphere variability 2.1.2 Life 2.2 External forcing mechanisms 2.2.1 Orbital variations 2.2.2 Solar output 2.2.3 Volcanism 2.2.4 Plate tectonics 2.2.5 Human influences 3 Physical evidence 3.1 Temperature measurements and proxies 3.2 Historical and archaeological evidence 3.3 Glaciers 3.4 Arctic sea ice loss 3.5 Vegetation 3.5.1 Forest genetic resources 3.6 Pollen analysis 3.7 Cloud cover and precipitation 3.8 Dendroclimatology 3.9 Ice cores 3.10 Animals 3.11 Sea level change 4 See also 5 Notes 6 References 7 Further reading 8 External links

Terminology The most general definition of climate change is a change in the statistical properties (principally its mean and spread)[2] of the climate system when considered over long periods of time, regardless of cause.[3] Accordingly, fluctuations over periods shorter than a few decades, such as El Niño, do not represent climate change. The term "climate change" is often used to refer specifically to anthropogenic climate change (also known as global warming). Anthropogenic climate change is caused by human activity, as opposed to changes in climate that may have resulted as part of Earth's natural processes.[4] In this sense, especially in the context of environmental policy, the term climate change has become synonymous with anthropogenic global warming. Within scientific journals, global warming refers to surface temperature increases while climate change includes global warming and everything else that increasing greenhouse gas levels affect.[5] A related term is "climatic change". In 1966, the World Meteorological Organization (WMO) proposed the term "climatic change" to encompass all forms of climatic variability on time-scales longer than 10 years, regardless of cause. Change was a given and climatic was used as an adjective to describe this kind of change (as opposed to political or economic change). When it was realized that human activities had a potential to drastically alter the climate, the term climate change replaced climatic change as the dominant term to reflect an anthropogenic cause. Climate change was incorporated in the title of the Intergovernmental Panel on Climate Change (IPCC) and the UN Framework Convention on Climate Change (UNFCCC). Climate change, used as a noun, became an issue rather than the technical description of changing weather.[6]

Causes See also: Attribution of recent climate change On the broadest scale, the rate at which energy is received from the Sun and the rate at which it is lost to space determine the equilibrium temperature and climate of Earth. This energy is distributed around the globe by winds, ocean currents, and other mechanisms to affect the climates of different regions. Factors that can shape climate are called climate forcings or "forcing mechanisms".[7] These include processes such as variations in solar radiation, variations in the Earth's orbit, variations in the albedo or reflectivity of the continents, atmosphere, and oceans, mountain-building and continental drift and changes in greenhouse gas concentrations. There are a variety of climate change feedbacks that can either amplify or diminish the initial forcing. Some parts of the climate system, such as the oceans and ice caps, respond more slowly in reaction to climate forcings, while others respond more quickly. There are also key threshold factors which when exceeded can produce rapid change. Forcing mechanisms can be either "internal" or "external". Internal forcing mechanisms are natural processes within the climate system itself (e.g., the thermohaline circulation). External forcing mechanisms can be either natural (e.g., changes in solar output, the earth's orbit, volcano eruptions) or anthropogenic (e.g. increased emissions of greenhouse gases and dust). Whether the initial forcing mechanism is internal or external, the response of the climate system might be fast (e.g., a sudden cooling due to airborne volcanic ash reflecting sunlight), slow (e.g. thermal expansion of warming ocean water), or a combination (e.g., sudden loss of albedo in the Arctic Ocean as sea ice melts, followed by more gradual thermal expansion of the water). Therefore, the climate system can respond abruptly, but the full response to forcing mechanisms might not be fully developed for centuries or even longer. Internal forcing mechanisms Scientists generally define the five components of earth's climate system to include atmosphere, hydrosphere, cryosphere, lithosphere (restricted to the surface soils, rocks, and sediments), and biosphere.[8] Natural changes in the climate system ("internal forcings") result in internal "climate variability".[9] Examples include the type and distribution of species, and changes in ocean-atmosphere circulations. Ocean-atmosphere variability Main article: Thermohaline circulation See also: Climate inertia Pacific decadal oscillation 1925 to 2010 The ocean and atmosphere can work together to spontaneously generate internal climate variability that can persist for years to decades at a time.[10][11] Examples of this type of variability include the El Niño-Southern Oscillation, the Pacific decadal oscillation, and the Atlantic Multidecadal Oscillation. These variations can affect global average surface temperature by redistributing heat between the deep ocean and the atmopshere[12][13] and/or by altering the cloud/water vapor/sea ice distribution which can affect the total energy budget of the earth.[14][15] The oceanic aspects of these circulations can generate variability on centennial timescales due to the ocean having hundreds of times more mass than in the atmosphere, and thus very high thermal inertia. For example, alterations to ocean processes such as thermohaline circulation play a key role in redistributing heat in the world's oceans. Due to the long timescales of this circulation, ocean temperature at depth is still adjusting to effects of the Little Ice Age[16] which occurred between the 1600 and 1800s. A schematic of modern thermohaline circulation. Tens of millions of years ago, continental-plate movement formed a land-free gap around Antarctica, allowing the formation of the ACC, which keeps warm waters away from Antarctica. Life Life affects climate through its role in the carbon and water cycles and through such mechanisms as albedo, evapotranspiration, cloud formation, and weathering.[17][18][19] Examples of how life may have affected past climate include: glaciation 2.3 billion years ago triggered by the evolution of oxygenic photosynthesis, which depleted the atmosphere of the greenhouse gas carbon dioxide and introduced free oxygen.[20][21] another glaciation 300 million years ago ushered in by long-term burial of decomposition-resistant detritus of vascular land-plants (creating a carbon sink and forming coal)[22][23] termination of the Paleocene-Eocene Thermal Maximum 55 million years ago by flourishing marine phytoplankton[24][25] reversal of global warming 49 million years ago by 800,000 years of arctic azolla blooms[26][27] global cooling over the past 40 million years driven by the expansion of grass-grazer ecosystems[28][29] External forcing mechanisms Milankovitch cycles from 800,000 years ago in the past to 800,000 years in the future. Variations in CO2, temperature and dust from the Vostok ice core over the last 450,000 years Orbital variations Main article: Milankovitch cycles Slight variations in Earth's orbit lead to changes in the seasonal distribution of sunlight reaching the Earth's surface and how it is distributed across the globe. There is very little change to the area-averaged annually averaged sunshine; but there can be strong changes in the geographical and seasonal distribution. The three types of orbital variations are variations in Earth's eccentricity, changes in the tilt angle of Earth's axis of rotation, and precession of Earth's axis. Combined together, these produce Milankovitch cycles which have a large impact on climate and are notable for their correlation to glacial and interglacial periods,[30] their correlation with the advance and retreat of the Sahara,[30] and for their appearance in the stratigraphic record.[31][32] The IPCC notes that Milankovitch cycles drove the ice age cycles, CO2 followed temperature change "with a lag of some hundreds of years", and that as a feedback amplified temperature change.[33] The depths of the ocean have a lag time in changing temperature (thermal inertia on such scale). Upon seawater temperature change, the solubility of CO2 in the oceans changed, as well as other factors impacting air-sea CO2 exchange.[34] Solar output Main article: Solar variation Variations in solar activity during the last several centuries based on observations of sunspots and beryllium isotopes. The period of extraordinarily few sunspots in the late 17th century was the Maunder minimum. The Sun is the predominant source of energy input to the Earth. Other sources include geothermal energy from the Earth's core, tidal energy from the Moon and heat from the decay of radioactive compounds. Both long- and short-term variations in solar intensity are known to affect global climate. Three to four billion years ago, the Sun emitted only 70% as much power as it does today. If the atmospheric composition had been the same as today, liquid water should not have existed on Earth. However, there is evidence for the presence of water on the early Earth, in the Hadean[35][36] and Archean[37][35] eons, leading to what is known as the faint young Sun paradox.[38] Hypothesized solutions to this paradox include a vastly different atmosphere, with much higher concentrations of greenhouse gases than currently exist.[39] Over the following approximately 4 billion years, the energy output of the Sun increased and atmospheric composition changed. The Great Oxygenation Event – oxygenation of the atmosphere around 2.4 billion years ago – was the most notable alteration. Over the next five billion years, the Sun's ultimate death as it becomes a red giant and then a white dwarf will have large effects on climate, with the red giant phase possibly ending any life on Earth that survives until that time. Solar output also varies on shorter time scales, including the 11-year solar cycle[40] and longer-term modulations.[41] Solar intensity variations possibly as a result of the Wolf, Spörer and Maunder Minimum are considered to have been influential in triggering the Little Ice Age,[42] and some of the warming observed from 1900 to 1950. The cyclical nature of the Sun's energy output is not yet fully understood; it differs from the very slow change that is happening within the Sun as it ages and evolves. Research indicates that solar variability has had effects including the Maunder minimum from 1645 to 1715 A.D., part of the Little Ice Age from 1550 to 1850 A.D. that was marked by relative cooling and greater glacier extent than the centuries before and afterward.[43][44] Some studies point toward solar radiation increases from cyclical sunspot activity affecting global warming, and climate may be influenced by the sum of all effects (solar variation, anthropogenic radiative forcings, etc.).[45][46] Interestingly, a 2010 study[47] suggests, “that the effects of solar variability on temperature throughout the atmosphere may be contrary to current expectations.” In an Aug 2011 Press Release,[48] CERN announced the publication in the Nature journal the initial results from its CLOUD experiment. The results indicate that ionisation from cosmic rays significantly enhances aerosol formation in the presence of sulfuric acid and water, but in the lower atmosphere where ammonia is also required, this is insufficient to account for aerosol formation and additional trace vapours must be involved. The next step is to find more about these trace vapours, including whether they are of natural or human origin. Further information: Cosmic ray § Postulated role in climate change Volcanism In atmospheric temperature from 1979 to 2010, determined by MSU NASA satellites, effects appear from aerosols released by major volcanic eruptions (El Chichón and Pinatubo). El Niño is a separate event, from ocean variability. The eruptions considered to be large enough to affect the Earth's climate on a scale of more than 1 year are the ones that inject over 100,000 tons of SO2 into the stratosphere.[49] This is due to the optical properties of SO2 and sulfate aerosols, which strongly absorb or scatter solar radiation, creating a global layer of sulfuric acid haze.[50] On average, such eruptions occur several times per century, and cause cooling (by partially blocking the transmission of solar radiation to the Earth's surface) for a period of a few years. The eruption of Mount Pinatubo in 1991, the second largest terrestrial eruption of the 20th century, affected the climate substantially, subsequently global temperatures decreased by about 0.5 °C (0.9 °F) for up to three years.[51][52] Thus, the cooling over large parts of the Earth reduced surface temperatures in 1991–93, the equivalent to a reduction in net radiation of 4 watts per square meter.[53] The Mount Tambora eruption in 1815 caused the Year Without a Summer.[54] Much larger eruptions, known as large igneous provinces, occur only a few times every fifty – one hundred million years – through flood basalt, and caused in Earth past global warming and mass extinctions.[55] Small eruptions, with injections of less than 0.1 Mt of sulfur dioxide into the stratosphere, impact the atmosphere only subtly, as temperature changes are comparable with natural variability. However, because smaller eruptions occur at a much higher frequency, they too have a significant impact on Earth's atmosphere.[49][56] Seismic monitoring maps current and future trends in volcanic activities, and tries to develop early warning systems. In climate modelling the aim is to study the physical mechanisms and feedbacks of volcanic forcing.[57] Volcanoes are also part of the extended carbon cycle. Over very long (geological) time periods, they release carbon dioxide from the Earth's crust and mantle, counteracting the uptake by sedimentary rocks and other geological carbon dioxide sinks. The US Geological Survey estimates are that volcanic emissions are at a much lower level than the effects of current human activities, which generate 100–300 times the amount of carbon dioxide emitted by volcanoes.[58] A review of published studies indicates that annual volcanic emissions of carbon dioxide, including amounts released from mid-ocean ridges, volcanic arcs, and hot spot volcanoes, are only the equivalent of 3 to 5 days of human-caused output. The annual amount put out by human activities may be greater than the amount released by supererruptions, the most recent of which was the Toba eruption in Indonesia 74,000 years ago.[59] Although volcanoes are technically part of the lithosphere, which itself is part of the climate system, the IPCC explicitly defines volcanism as an external forcing agent.[60] Plate tectonics Main article: Plate tectonics Over the course of millions of years, the motion of tectonic plates reconfigures global land and ocean areas and generates topography. This can affect both global and local patterns of climate and atmosphere-ocean circulation.[61] The position of the continents determines the geometry of the oceans and therefore influences patterns of ocean circulation. The locations of the seas are important in controlling the transfer of heat and moisture across the globe, and therefore, in determining global climate. A recent example of tectonic control on ocean circulation is the formation of the Isthmus of Panama about 5 million years ago, which shut off direct mixing between the Atlantic and Pacific Oceans. This strongly affected the ocean dynamics of what is now the Gulf Stream and may have led to Northern Hemisphere ice cover.[62][63] During the Carboniferous period, about 300 to 360 million years ago, plate tectonics may have triggered large-scale storage of carbon and increased glaciation.[64] Geologic evidence points to a "megamonsoonal" circulation pattern during the time of the supercontinent Pangaea, and climate modeling suggests that the existence of the supercontinent was conducive to the establishment of monsoons.[65] The size of continents is also important. Because of the stabilizing effect of the oceans on temperature, yearly temperature variations are generally lower in coastal areas than they are inland. A larger supercontinent will therefore have more area in which climate is strongly seasonal than will several smaller continents or islands. Human influences Increase in atmospheric CO2 levels Main article: Global warming In the context of climate variation, anthropogenic factors are human activities which affect the climate. The scientific consensus on climate change is "that climate is changing and that these changes are in large part caused by human activities,"[66] and it "is largely irreversible."[67] “Science has made enormous inroads in understanding climate change and its causes, and is beginning to help develop a strong understanding of current and potential impacts that will affect people today and in coming decades. This understanding is crucial because it allows decision makers to place climate change in the context of other large challenges facing the nation and the world. There are still some uncertainties, and there always will be in understanding a complex system like Earth’s climate. Nevertheless, there is a strong, credible body of evidence, based on multiple lines of research, documenting that climate is changing and that these changes are in large part caused by human activities. While much remains to be learned, the core phenomenon, scientific questions, and hypotheses have been examined thoroughly and have stood firm in the face of serious scientific debate and careful evaluation of alternative explanations.” — United States National Research Council, Advancing the Science of Climate Change Of most concern in these anthropogenic factors is the increase in CO2 levels. This is due to emissions from fossil fuel combustion, followed by aerosols (particulate matter in the atmosphere), and the CO2 released by cement manufacture.[68] Other factors, including land use, ozone depletion, animal husbandry (ruminant animals such as cattle produce methane,[69] as do termites), and deforestation, are also of concern in the roles they play – both separately and in conjunction with other factors – in affecting climate, microclimate, and measures of climate variables.[70]

Physical evidence Global temperature anomalies for 2015 compared to the 1951–1980 baseline. 2015 was the warmest year in the NASA/NOAA temperature record, which starts in 1880. It has since been superseded by 2016 (NASA/NOAA; 20 January 2016).[71] Comparisons between Asian Monsoons from 200 AD to 2000 AD (staying in the background on other plots), Northern Hemisphere temperature, Alpine glacier extent (vertically inverted as marked), and human history as noted by the U.S. NSF. Arctic temperature anomalies over a 100-year period as estimated by NASA. Typical high monthly variance can be seen, while longer-term averages highlight trends. Evidence for climatic change is taken from a variety of sources that can be used to reconstruct past climates. Reasonably complete global records of surface temperature are available beginning from the mid-late 19th century. For earlier periods, most of the evidence is indirect—climatic changes are inferred from changes in proxies, indicators that reflect climate, such as vegetation, ice cores,[72] dendrochronology, sea level change, and glacial geology. Temperature measurements and proxies The instrumental temperature record from surface stations was supplemented by radiosonde balloons, extensive atmospheric monitoring by the mid-20th century, and, from the 1970s on, with global satellite data as well. Taking the record as a whole, most of the 20th century had been unprecedentedly warm, while the 19th and 17th centuries were quite cool.[73] The 18O/16O ratio in calcite and ice core samples used to deduce ocean temperature in the distant past is an example of a temperature proxy method, as are other climate metrics noted in subsequent categories. Historical and archaeological evidence Main article: Historical impacts of climate change Climate change in the recent past may be detected by corresponding changes in settlement and agricultural patterns.[74] Archaeological evidence, oral history and historical documents can offer insights into past changes in the climate. Climate change effects have been linked to the collapse of various civilizations.[74] Decline in thickness of glaciers worldwide over the past half-century Glaciers Glaciers are considered among the most sensitive indicators of climate change.[75] Their size is determined by a mass balance between snow input and melt output. As temperatures warm, glaciers retreat unless snow precipitation increases to make up for the additional melt; the converse is also true. Glaciers grow and shrink due both to natural variability and external forcings. Variability in temperature, precipitation, and englacial and subglacial hydrology can strongly determine the evolution of a glacier in a particular season. Therefore, one must average over a decadal or longer time-scale and/or over many individual glaciers to smooth out the local short-term variability and obtain a glacier history that is related to climate. A world glacier inventory has been compiled since the 1970s, initially based mainly on aerial photographs and maps but now relying more on satellites. This compilation tracks more than 100,000 glaciers covering a total area of approximately 240,000 km2, and preliminary estimates indicate that the remaining ice cover is around 445,000 km2. The World Glacier Monitoring Service collects data annually on glacier retreat and glacier mass balance. From this data, glaciers worldwide have been found to be shrinking significantly, with strong glacier retreats in the 1940s, stable or growing conditions during the 1920s and 1970s, and again retreating from the mid-1980s to present.[76] The most significant climate processes since the middle to late Pliocene (approximately 3 million years ago) are the glacial and interglacial cycles. The present interglacial period (the Holocene) has lasted about 11,700 years.[77] Shaped by orbital variations, responses such as the rise and fall of continental ice sheets and significant sea-level changes helped create the climate. Other changes, including Heinrich events, Dansgaard–Oeschger events and the Younger Dryas, however, illustrate how glacial variations may also influence climate without the orbital forcing. Glaciers leave behind moraines that contain a wealth of material—including organic matter, quartz, and potassium that may be dated—recording the periods in which a glacier advanced and retreated. Similarly, by tephrochronological techniques, the lack of glacier cover can be identified by the presence of soil or volcanic tephra horizons whose date of deposit may also be ascertained. Data from NASA's Grace satellites show that the land ice sheets in both Antarctica (upper chart) and Greenland (lower) have been losing mass since 2002. Both ice sheets have seen an acceleration of ice mass loss since 2009. [1] Arctic sea ice loss Main articles: Arctic sea ice decline and Climate change in the Arctic The decline in Arctic sea ice, both in extent and thickness, over the last several decades is further evidence for rapid climate change.[78] Sea ice is frozen seawater that floats on the ocean surface. It covers millions of square kilometers in the polar regions, varying with the seasons. In the Arctic, some sea ice remains year after year, whereas almost all Southern Ocean or Antarctic sea ice melts away and reforms annually. Satellite observations show that Arctic sea ice is now declining at a rate of 13.2 percent per decade, relative to the 1981 to 2010 average.[79] The 2007 Arctic summer sea ice retreat was unprecedented. Decades of shrinking and thinning in a warm climate has put the Arctic sea ice in a precarious position, it is now vulnerable to atmospheric anomalies.[80] “Both extent and volume anomaly fluctuate little from January to July and then decrease steeply in August and September”.[80] This decrease is because of lessened ice production as a result of the unusually high SAT. During the Arctic summer, a slower rate of sea ice production is the same as a faster rate of sea ice melting. Play media This video summarizes how climate change, associated with increased carbon dioxide levels, has affected plant growth. Vegetation A change in the type, distribution and coverage of vegetation may occur given a change in the climate. Some changes in climate may result in increased precipitation and warmth, resulting in improved plant growth and the subsequent sequestration of airborne CO2. A gradual increase in warmth in a region will lead to earlier flowering and fruiting times, driving a change in the timing of life cycles of dependent organisms. Conversely, cold will cause plant bio-cycles to lag.[81] Larger, faster or more radical changes, however, may result in vegetation stress, rapid plant loss and desertification in certain circumstances.[82][83] An example of this occurred during the Carboniferous Rainforest Collapse (CRC), an extinction event 300 million years ago. At this time vast rainforests covered the equatorial region of Europe and America. Climate change devastated these tropical rainforests, abruptly fragmenting the habitat into isolated 'islands' and causing the extinction of many plant and animal species.[82] Forest genetic resources Even though this is a field with many uncertainties, it is expected that over the next 50 years climate changes will have an effect on the diversity of forest genetic resources and thereby on the distribution of forest tree species and the composition of forests. Diversity of forest genetic resources enables the potential for a species (or a population) to adapt to climatic changes and related future challenges such as temperature changes, drought, pests, diseases and forest fire. However, species are not naturally capable to adapt in the pace of which the climate is changing and the increasing temperatures will most likely facilitate the spread of pests and diseases, creating an additional threat to forest trees and their populations.[84] To inhibit these problems human interventions, such as transfer of forest reproductive material, may be needed.[85] Pollen analysis Palynology is the study of contemporary and fossil palynomorphs, including pollen. Palynology is used to infer the geographical distribution of plant species, which vary under different climate conditions. Different groups of plants have pollen with distinctive shapes and surface textures, and since the outer surface of pollen is composed of a very resilient material, they resist decay. Changes in the type of pollen found in different layers of sediment in lakes, bogs, or river deltas indicate changes in plant communities. These changes are often a sign of a changing climate.[86][87] As an example, palynological studies have been used to track changing vegetation patterns throughout the Quaternary glaciations[88] and especially since the last glacial maximum.[89] Top: Arid ice age climate Middle: Atlantic Period, warm and wet Bottom: Potential vegetation in climate now if not for human effects like agriculture.[90] Cloud cover and precipitation See also: Cloud and Precipitation Past precipitation can be estimated in the modern era with the global network of precipitation gauges. Surface coverage over oceans and remote areas is relatively sparse, but, reducing reliance on interpolation, satellite clouds and precipitation data has been available since the 1970s.[91] Quantification of climatological variation of precipitation in prior centuries and epochs is less complete but approximated using proxies such as marine sediments, ice cores, cave stalagmites, and tree rings.[92] In July 2016 scientists published evidence of increased cloud cover over polar regions,[93] as predicted by climate models.[94] Climatological temperatures substantially affect cloud cover and precipitation. For instance, during the Last Glacial Maximum of 18,000 years ago, thermal-driven evaporation from the oceans onto continental landmasses was low, causing large areas of extreme desert, including polar deserts (cold but with low rates of cloud cover and precipitation).[90] In contrast, the world's climate was cloudier and wetter than today near the start of the warm Atlantic Period of 8000 years ago.[90] Estimated global land precipitation increased by approximately 2% over the course of the 20th century, though the calculated trend varies if different time endpoints are chosen, complicated by ENSO and other oscillations, including greater global land cloud cover precipitation in the 1950s and 1970s than the later 1980s and 1990s despite the positive trend over the century overall.[91][95][96] Similar slight overall increase in global river runoff and in average soil moisture has been perceived.[95] Dendroclimatology Dendroclimatology is the analysis of tree ring growth patterns to determine past climate variations.[97] Wide and thick rings indicate a fertile, well-watered growing period, while thin, narrow rings indicate a period of lower rainfall and less-than-ideal growing conditions. Ice cores The Antarctic temperature changes during the last several glacial and interglacial cycles of the present ice age, according to δ18O ratios. Analysis of ice in a core drilled from an ice sheet such as the Antarctic ice sheet, can be used to show a link between temperature and global sea level variations. The air trapped in bubbles in the ice can also reveal the CO2 variations of the atmosphere from the distant past, well before modern environmental influences. The study of these ice cores has been a significant indicator of the changes in CO2 over many millennia, and continues to provide valuable information about the differences between ancient and modern atmospheric conditions. Animals Remains of beetles are common in freshwater and land sediments. Different species of beetles tend to be found under different climatic conditions. Given the extensive lineage of beetles whose genetic makeup has not altered significantly over the millennia, knowledge of the present climatic range of the different species, and the age of the sediments in which remains are found, past climatic conditions may be inferred.[98] The studies of the impact in vertebrates are few mainly from developing countries, where there are the fewest studies; between 1970 and 2012, vertebrates declined by 58 percent, with freshwater, marine, and terrestrial populations declining by 81, 36, and 35 percent, respectively[99]. Similarly, the historical abundance of various fish species has been found to have a substantial relationship with observed climatic conditions.[100] Changes in the primary productivity of autotrophs in the oceans can affect marine food webs.[101] Sea level change Main articles: Sea level and Sea level rise The estimated change in sea level caused by carbon dioxide emissions. Global sea level change for much of the last century has generally been estimated using tide gauge measurements collated over long periods of time to give a long-term average. More recently, altimeter measurements — in combination with accurately determined satellite orbits — have provided an improved measurement of global sea level change.[102] To measure sea levels prior to instrumental measurements, scientists have dated coral reefs that grow near the surface of the ocean, coastal sediments, marine terraces, ooids in limestones, and nearshore archaeological remains. The predominant dating methods used are uranium series and radiocarbon, with cosmogenic radionuclides being sometimes used to date terraces that have experienced relative sea level fall. In the early Pliocene, global temperatures were 1–2˚C warmer than the present temperature, yet sea level was 15–25 meters higher than today.[103][104][105] According to recent study’s, from the beginning of January 1870 to December 2004, the total Global-Mean Sea Level (GMSL) rise is 195mm (John A. Church et al. , Geophysical Research Letters, 2006). And since this data was recorded, it has been recorded that the sea levels have increased a further 43.4mm as of July 2017 (Unknown Author, , 2017).

See also Environment portal Global warming portal Energy portal Abrupt climate change and links therein Blue carbon Climate change in popular culture Geologic time scale Homogenization Solar cycle Temperature record Climate of recent glaciations Bond event Climate of the past Ice ages Paleocene–Eocene Thermal Maximum Permo-Carboniferous Glaciation Snowball Earth Recent climate Anthropocene CORA dataset temperature and salinity of global oceans Effects of global warming on oceans Extreme weather Hardiness zone Holocene climatic optimum Land surface effects on climate Medieval Warm Period Temperature record of the past 1000 years

Notes ^ America's Climate Choices: Panel on Advancing the Science of Climate Change; National Research Council (2010). Advancing the Science of Climate Change. Washington, D.C.: The National Academies Press. ISBN 0-309-14588-0. Archived from the original on 29 May 2014. (p1) ... there is a strong, credible body of evidence, based on multiple lines of research, documenting that climate is changing and that these changes are in large part caused by human activities. While much remains to be learned, the core phenomenon, scientific questions, and hypotheses have been examined thoroughly and have stood firm in the face of serious scientific debate and careful evaluation of alternative explanations. * * * (pp. 21–22) Some scientific conclusions or theories have been so thoroughly examined and tested, and supported by so many independent observations and results, that their likelihood of subsequently being found to be wrong is vanishingly small. Such conclusions and theories are then regarded as settled facts. This is the case for the conclusions that the Earth system is warming and that much of this warming is very likely due to human activities.  ^ Solomon, S.; Qin, D.; Manning, M.; Chen, Z.; Marquis, M.; Averyt, K. B.; Tignor, M.; Miller, H. L., eds. (2007). "Understanding and Attributing Climate Change". Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, 2007. Intergovernmental Panel on Climate Change (IPCC).  ^ "Glossary – Climate Change". Education Center – Arctic Climatology and Meteorology. NSIDC National Snow and Ice Data Center. ; Glossary, in IPCC TAR WG1 2001. ^ "The United Nations Framework Convention on Climate Change". 21 March 1994. Climate change means a change of climate which is attributed directly or indirectly to human activity that alters the composition of the global atmosphere and which is in addition to natural climate variability observed over comparable time periods.  ^ "What's in a Name? Global Warming vs. Climate Change". NASA. Retrieved 23 July 2011.  ^ Hulme, Mike (2016). Concept of Climate Change, in: The International Encyclopedia of Geography. Wiley-Blackwell/Association of American Geographers (AAG). Retrieved 16 May 2016.  ^ Smith, Ralph C. (2013). Uncertainty Quantification: Theory, Implementation, and Applications. Computational Science and Engineering. 12. SIAM. p. 23. ISBN 1611973228.  ^ "Glossary". NASA Earth Observatory. 2011. Retrieved 8 July 2011. Climate System: The five physical components (atmosphere, hydrosphere, cryosphere, lithosphere, and biosphere) that are responsible for the climate and its variations.  ^ IPCC (2007). "What are Climate Change and Climate Variability?". IPCC.  ^ Brown, Patrick T.; Li, Wenhong; Cordero, Eugene C.; Mauget, Steven A. (2015-04-21). "Comparing the model-simulated global warming signal to observations using empirical estimates of unforced noise". Scientific Reports. 5: 9957. Bibcode:2015NatSR...5E9957B. doi:10.1038/srep09957. ISSN 2045-2322. PMC 4404682 . PMID 25898351.  ^ Hasselmann, K. (1976-12-01). "Stochastic climate models Part I. Theory". Tellus. 28 (6): 473–485. doi:10.1111/j.2153-3490.1976.tb00696.x. ISSN 2153-3490.  ^ Meehl, Gerald A.; Hu, Aixue; Arblaster, Julie M.; Fasullo, John; Trenberth, Kevin E. (2013-04-08). "Externally Forced and Internally Generated Decadal Climate Variability Associated with the Interdecadal Pacific Oscillation". Journal of Climate. 26 (18): 7298–7310. Bibcode:2013JCli...26.7298M. doi:10.1175/JCLI-D-12-00548.1. ISSN 0894-8755.  ^ England, Matthew H.; McGregor, Shayne; Spence, Paul; Meehl, Gerald A.; Timmermann, Axel; Cai, Wenju; Gupta, Alex Sen; McPhaden, Michael J.; Purich, Ariaan (2014-03-01). "Recent intensification of wind-driven circulation in the Pacific and the ongoing warming hiatus". Nature Climate Change. 4 (3): 222–227. Bibcode:2014NatCC...4..222E. doi:10.1038/nclimate2106. ISSN 1758-678X.  ^ Brown, Patrick T.; Li, Wenhong; Li, Laifang; Ming, Yi (2014-07-28). "Top-of-atmosphere radiative contribution to unforced decadal global temperature variability in climate models". Geophysical Research Letters. 41 (14): 2014GL060625. Bibcode:2014GeoRL..41.5175B. doi:10.1002/2014GL060625. ISSN 1944-8007.  ^ Palmer, M. D.; McNeall, D. J. (2014-01-01). "Internal variability of Earth's energy budget simulated by CMIP5 climate models". Environmental Research Letters. 9 (3): 034016. Bibcode:2014ERL.....9c4016P. doi:10.1088/1748-9326/9/3/034016. ISSN 1748-9326.  ^ Kirk Bryan, Geophysical Fluid Dynamics Laboratory. Man's Great Geophysical Experiment. U.S. National Oceanic and Atmospheric Administration. ^ Spracklen, D. V.; Bonn, B.; Carslaw, K. S. (2008). "Boreal forests, aerosols and the impacts on clouds and climate". Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences. 366 (1885): 4613–26. Bibcode:2008RSPTA.366.4613S. doi:10.1098/rsta.2008.0201. PMID 18826917.  ^ Christner, B. C.; Morris, C. E.; Foreman, C. M.; Cai, R.; Sands, D. C. (2008). "Ubiquity of Biological Ice Nucleators in Snowfall". Science. 319 (5867): 1214. Bibcode:2008Sci...319.1214C. doi:10.1126/science.1149757. PMID 18309078.  ^ Schwartzman, David W.; Volk, Tyler (1989). "Biotic enhancement of weathering and the habitability of Earth". Nature. 340 (6233): 457–460. Bibcode:1989Natur.340..457S. doi:10.1038/340457a0.  ^ Kopp, R. E.; Kirschvink, J. L.; Hilburn, I. A.; Nash, C. Z. (2005). "The Paleoproterozoic snowball Earth: A climate disaster triggered by the evolution of oxygenic photosynthesis". Proceedings of the National Academy of Sciences. 102 (32): 11131–6. Bibcode:2005PNAS..10211131K. doi:10.1073/pnas.0504878102. PMC 1183582 . PMID 16061801.  ^ Kasting, J. F.; Siefert, JL (2002). "Life and the Evolution of Earth's Atmosphere". Science. 296 (5570): 1066–8. Bibcode:2002Sci...296.1066K. doi:10.1126/science.1071184. PMID 12004117.  ^ Mora, C. I.; Driese, S. G.; Colarusso, L. A. (1996). "Middle to Late Paleozoic Atmospheric CO2 Levels from Soil Carbonate and Organic Matter". Science. 271 (5252): 1105–1107. Bibcode:1996Sci...271.1105M. doi:10.1126/science.271.5252.1105.  ^ Berner, R. A. (1999). "Atmospheric oxygen over Phanerozoic time". Proceedings of the National Academy of Sciences. 96 (20): 10955–7. Bibcode:1999PNAS...9610955B. doi:10.1073/pnas.96.20.10955. PMC 34224 . PMID 10500106.  ^ Bains, Santo; Norris, Richard D.; Corfield, Richard M.; Faul, Kristina L. (2000). "Termination of global warmth at the Palaeocene/Eocene boundary through productivity feedback". Nature. 407 (6801): 171–4. Bibcode:2000Natur.407..171B. doi:10.1038/35025035. PMID 11001051.  ^ Zachos, J. C.; Dickens, G. R. (2000). "An assessment of the biogeochemical feedback response to the climatic and chemical perturbations of the LPTM". GFF. 122: 188–189. doi:10.1080/11035890001221188.  ^ Speelman, E. N.; Van Kempen, M. M. L.; Barke, J.; Brinkhuis, H.; Reichart, G. J.; Smolders, A. J. P.; Roelofs, J. G. M.; Sangiorgi, F.; De Leeuw, J. W.; Lotter, A. F.; Sinninghe Damsté, J. S. (2009). "The Eocene Arctic Azolla bloom: Environmental conditions, productivity and carbon drawdown". Geobiology. 7 (2): 155–70. doi:10.1111/j.1472-4669.2009.00195.x. PMID 19323694.  ^ Brinkhuis, Henk; Schouten, Stefan; Collinson, Margaret E.; Sluijs, Appy; Sinninghe Damsté, Jaap S. Sinninghe; Dickens, Gerald R.; Huber, Matthew; Cronin, Thomas M.; Onodera, Jonaotaro; Takahashi, Kozo; Bujak, Jonathan P.; Stein, Ruediger; Van Der Burgh, Johan; Eldrett, James S.; Harding, Ian C.; Lotter, André F.; Sangiorgi, Francesca; Van Konijnenburg-Van Cittert, Han van Konijnenburg-van; De Leeuw, Jan W.; Matthiessen, Jens; Backman, Jan; Moran, Kathryn; Expedition 302, Scientists (2006). "Episodic fresh surface waters in the Eocene Arctic Ocean". Nature. 441 (7093): 606–9. Bibcode:2006Natur.441..606B. doi:10.1038/nature04692. PMID 16752440.  ^ Retallack, Gregory J. (2001). "Cenozoic Expansion of Grasslands and Climatic Cooling". The Journal of Geology. 109 (4): 407–426. Bibcode:2001JG....109..407R. doi:10.1086/320791.  ^ Dutton, Jan F.; Barron, Eric J. (1997). "Miocene to present vegetation changes: A possible piece of the Cenozoic cooling puzzle". Geology. 25: 39. Bibcode:1997Geo....25...39D. doi:10.1130/0091-7613(1997)025<0039:MTPVCA>2.3.CO;2.  ^ a b "Milankovitch Cycles and Glaciation". University of Montana. Archived from the original on 2011-07-16. Retrieved 2 April 2009.  ^ Gale, Andrew S. (1989). "A Milankovitch scale for Cenomanian time". Terra Nova. 1 (5): 420–425. Bibcode:1989TeNov...1..420G. doi:10.1111/j.1365-3121.1989.tb00403.x.  ^ "Same forces as today caused climate changes 1.4 billion years ago". University of Denmark. Archived from the original on 12 March 2015.  ^ FAQ 6.1: What Caused the Ice Ages and Other Important Climate Changes Before the Industrial Era? in IPCC AR4 WG1 2007. ^ Box 6.2: What Caused the Low Atmospheric Carbon Dioxide Concentrations During Glacial Times? in IPCC AR4 WG1 2007 . ^ a b Marty, B. (2006). "Water in the Early Earth". Reviews in Mineralogy and Geochemistry. 62: 421–450. Bibcode:2006RvMG...62..421M. doi:10.2138/rmg.2006.62.18.  ^ Watson, E. B.; Harrison, TM (2005). "Zircon Thermometer Reveals Minimum Melting Conditions on Earliest Earth". Science. 308 (5723): 841–4. Bibcode:2005Sci...308..841W. doi:10.1126/science.1110873. PMID 15879213.  ^ Hagemann, Steffen G.; Gebre-Mariam, Musie; Groves, David I. (1994). "Surface-water influx in shallow-level Archean lode-gold deposits in Western, Australia". Geology. 22 (12): 1067. Bibcode:1994Geo....22.1067H. doi:10.1130/0091-7613(1994)022<1067:SWIISL>2.3.CO;2.  ^ Sagan, C.; G. Mullen (1972). Earth and Mars: Evolution of Atmospheres and Surface Temperatures.  ^ Sagan, C.; Chyba, C (1997). "The Early Faint Sun Paradox: Organic Shielding of Ultraviolet-Labile Greenhouse Gases". Science. 276 (5316): 1217–21. Bibcode:1997Sci...276.1217S. doi:10.1126/science.276.5316.1217. PMID 11536805.  ^ Willson, Richard C.; Hudson, Hugh S. (1991). "The Sun's luminosity over a complete solar cycle". Nature. 351 (6321): 42–44. Bibcode:1991Natur.351...42W. doi:10.1038/351042a0.  ^ Willson, Richard C. (2003). "Secular total solar irradiance trend during solar cycles 21–23". Geophysical Research Letters. 30 (5): n/a. Bibcode:2003GeoRL..30.1199W. doi:10.1029/2002GL016038.  ^ "Solar Irradiance Changes and the Relatively Recent Climate". Solar influences on global change. Washington, D.C: National Academy Press. 1994. p. 36. ISBN 0-309-05148-7.  ^ "Glossary I-M". NASA Earth Observatory. Retrieved 28 February 2011.  ^ Bard, Edouard; Raisbeck, Grant; Yiou, Françoise; Jouzel, Jean (2000). "Solar irradiance during the last 1200 years based on cosmogenic nuclides". Tellus B. 52 (3): 985–992. Bibcode:2000TellB..52..985B. doi:10.1034/j.1600-0889.2000.d01-7.x.  ^ "NASA Study Finds Increasing Solar Trend That Can Change Climate". 2003.  ^ Svensmark, Henrik; Bondo, Torsten; Svensmark, Jacob (2009). "Cosmic ray decreases affect atmospheric aerosols and clouds". Geophysical Research Letters. 36 (15): n/a. Bibcode:2009GeoRL..3615101S. doi:10.1029/2009GL038429.  ^ Haigh, Joanna D.; Ann R. Winning; Ralf Toumi; Jerald W. Harder (2010-10-07). "An influence of solar spectral variations on radiative forcing of climate" (PDF). Nature. 467 (7316): 696–9. Bibcode:2010Natur.467..696H. doi:10.1038/nature09426. ISSN 0028-0836. PMID 20930841. Currently there is insufficient observational evidence to validate the spectral variations observed by SIM, or to fully characterize other solar cycles, but our findings raise the possibility that the effects of solar variability on temperature throughout the atmosphere may be contrary to current expectations.  ^ Jasper Kirkby; et al. (2011). "CERN's CLOUD experiment provides unprecedented insight into cloud formation". Nature. doi:10.1038/news.2011.504.  ^ a b Miles, M. G.; Grainger, R. G.; Highwood, E. J. (2004). "The significance of volcanic eruption strength and frequency for climate" (pdf). Quarterly Journal of the Royal Meteorological Society. 130 (602): 2361–2376. doi:10.1256/qj.30.60 (inactive 2017-01-16).  ^ "Volcanic Gases and Climate Change Overview". USGS. Retrieved 31 July 2014.  ^ Diggles, Michael (28 February 2005). "The Cataclysmic 1991 Eruption of Mount Pinatubo, Philippines". U.S. Geological Survey Fact Sheet 113-97. United States Geological Survey. Retrieved 8 October 2009.  ^ Diggles, Michael. "The Cataclysmic 1991 Eruption of Mount Pinatubo, Philippines". Retrieved 31 July 2014.  ^ Newhall, Chris. "The Atmospheric Impact of the 1991 Mount Pinatubo Eruption". USGS. Retrieved 31 July 2014.  ^ Oppenheimer, Clive (2003). "Climatic, environmental and human consequences of the largest known historic eruption: Tambora volcano (Indonesia) 1815". Progress in Physical Geography. 27 (2): 230–259. doi:10.1191/0309133303pp379ra.  ^ Wignall, P (2001). "Large igneous provinces and mass extinctions". Earth-Science Reviews. 53: 1–33. Bibcode:2001ESRv...53....1W. doi:10.1016/S0012-8252(00)00037-4.  ^ Graf, H.-F.; Feichter, J.; Langmann, B. (1997). "Volcanic sulphur emissions: Estimates of source strength and its contribution to the global sulphate distribution" (pdf). Journal of Geophysical Research: Atmospheres. 102: 10727–10738. Bibcode:1997JGR...10210727G. doi:10.1029/96JD03265.  ^ "IPCC Fourth Assessment Report: Climate Change 2007". Retrieved 31 July 2014.  ^ "Volcanic Gases and Their Effects". U.S. Department of the Interior. 2006-01-10. Retrieved 21 January 2008.  ^ "Human Activities Emit Way More Carbon Dioxide Than Do Volcanoes". American Geophysical Union. 14 June 2011. Retrieved 20 June 2011.  ^ Annexes,[page needed] in IPCC AR4 SYR 2007. ^ Forest, C. E.; Wolfe, J. A.; Molnar, P. .; Emanuel, K. A. (1999). "Paleoaltimetry incorporating atmospheric physics and botanical estimates of paleoclimate". Geological Society of America Bulletin. 111 (4): 497–511. Bibcode:1999GSAB..111..497F. doi:10.1130/0016-7606(1999)111<0497:PIAPAB>2.3.CO;2.  ^ "Panama: Isthmus that Changed the World". NASA Earth Observatory. Archived from the original on 2 August 2007. Retrieved 1 July 2008.  ^ Haug, Gerald H.; Keigwin, Lloyd D. (22 March 2004). "How the Isthmus of Panama Put Ice in the Arctic". Oceanus. Woods Hole Oceanographic Institution. 42 (2). Retrieved 1 October 2013.  ^ Bruckschen, Peter; Oesmanna, Susanne; Veizer, Ján (1999-09-30). "Isotope stratigraphy of the European Carboniferous: proxy signals for ocean chemistry, climate and tectonics". Chemical Geology. 161 (1–3): 127–163. Bibcode:1999ChGeo.161..127B. doi:10.1016/S0009-2541(99)00084-4.  ^ Parrish, Judith T. (1993). "Climate of the Supercontinent Pangea". Chemical Geology. The University of Chicago Press. 101 (2): 215–233. Bibcode:1993JG....101..215P. doi:10.1086/648217. JSTOR 30081148.  ^ America's Climate Choices: Panel on Advancing the Science of Climate Change; National Research Council (2010). Advancing the Science of Climate Change. Washington, D.C.: The National Academies Press. ISBN 0-309-14588-0. Archived from the original on 29 May 2014.  ^ Susan Solomon; Gian-Kasper Plattner; Reto Knutti; Pierre Friedlingstein (2009). "Irreversible climate change due to carbon dioxide emissions". Proceedings of the National Academy of Sciences of the United States of America. Proceedings of the National Academy of Sciences of the United States of America. 106 (6): 1704–9. Bibcode:2009PNAS..106.1704S. doi:10.1073/pnas.0812721106. PMC 2632717 . PMID 19179281.  ^ "3. Are human activities causing climate change? | Australian Academy of Science". Retrieved 2017-08-12.  ^ Steinfeld, H.; P. Gerber; T. Wassenaar; V. Castel; M. Rosales; C. de Haan (2006). Livestock's long shadow.  ^ The Editorial Board (28 November 2015). "What the Paris Climate Meeting Must Do". New York Times. Retrieved 28 November 2015.  ^ Brown, Dwayne; Cabbage, Michael; McCarthy, Leslie; Norton, Karen (20 January 2016). "NASA, NOAA Analyses Reveal Record-Shattering Global Warm Temperatures in 2015". NASA. Retrieved 21 January 2016.  ^ Petit, J. R.; Jouzel, J.; Raynaud, D.; Barkov, N. I.; Barnola, J.-M.; Basile, I.; Bender, M.; Chappellaz, J.; Davis, M.; Delaygue, G.; Delmotte, M.; Kotlyakov, V. M.; Legrand, M.; Lipenkov, V. Y.; Lorius, C.; Ritz, C.; Saltzman, E. (1999-06-03). "Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica". Nature. 399 (1): 429–436. Bibcode:1999Natur.399..429P. doi:10.1038/20859.  ^ Von Radowitz, John (April 23, 1998). "CLIMATE WARMEST SINCE MIDDLE AGES". Century Newspapers LTD.  ^ a b Demenocal, P. B. (2001). "Cultural Responses to Climate Change During the Late Holocene" (PDF). Science. 292 (5517): 667–673. Bibcode:2001Sci...292..667D. doi:10.1126/science.1059827. PMID 11303088.  ^ Seiz, G.; N. Foppa (2007). The activities of the World Glacier Monitoring Service (WGMS) (PDF) (Report). Archived from the original (PDF) on 25 March 2009. Retrieved 21 June 2009.  ^ Zemp, M.; I.Roer; A.Kääb; M.Hoelzle; F.Paul; W. Haeberli (2008). United Nations Environment Programme – Global Glacier Changes: facts and figures (PDF) (Report). Retrieved 21 June 2009.  ^ "International Stratigraphic Chart". International Commission on Stratigraphy. 2008. Archived from the original on 15 October 2011. Retrieved 3 October 2011.  ^ NASA Global Climate Change "Climate Change: How do we know?", ^ Shaftel, Holly. "Arctic Sea Ice Minimum". NASA Global Climate Change. Earth Science Communications Team at NASA's Jet Propulsion Laboratory. Retrieved 21 June 2015.  ^ a b Zhang, Jinlun (11 June 2008). "What drove the dramatic retreat of arctic sea ice during summer 2007?". Geophysical Research Letters. 35: 1–5.  ^ Kinver, Mark (2011-11-15). "UK trees' fruit ripening '18 days earlier'". Retrieved 1 November 2012.  ^ a b Sahney, S.; Benton, M. J.; Falcon-Lang, H. J. (2010). "Rainforest collapse triggered Pennsylvanian tetrapod diversification in Euramerica" (PDF). Geology. 38 (12): 1079–1082. Bibcode:2010Geo....38.1079S. doi:10.1130/G31182.1. Retrieved 27 November 2013.  ^ Bachelet, D.; Neilson, R.; Lenihan, J. M.; Drapek, R. J. (2001). "Climate Change Effects on Vegetation Distribution and Carbon Budget in the United States". Ecosystems. 4 (3): 164–185. doi:10.1007/s10021-001-0002-7.  ^ Konert, M.; Fady, B.; Gömöry, D.; A'Hara, S.; Wolter,F; Ducci, F.; Koskela,J.; Bozzano,M.; Maaten, T. & Kowalczyk, J. "Use and Transfer of forest reproductive material in Europe in the context of climate change" (PDF). European Forest Genetic Resources Programme. CS1 maint: Multiple names: authors list (link) ^ Koskela, J.; Buck, A.; Teissier du Cros, E. "Climate change and forest genetic diversity – Implications for sustainable forest management in Europe" (PDF). European Forest Genetic Resources Programme. CS1 maint: Multiple names: authors list (link) ^ Langdon, PG; Barber, KE; Lomas-Clarke, SH; Lomas-Clarke, S. H. (August 2004). "Reconstructing climate and environmental change in northern England through chironomid and pollen analyses: evidence from Talkin Tarn, Cumbria". Journal of Paleolimnology. 32 (2): 197–213. doi:10.1023/B:JOPL.0000029433.85764.a5.  ^ Birks, HH (March 2003). "The importance of plant macrofossils in the reconstruction of Lateglacial vegetation and climate: examples from Scotland, western Norway, and Minnesota, USA". Quaternary Science Reviews. 22 (5–7): 453–473. Bibcode:2003QSRv...22..453B. doi:10.1016/S0277-3791(02)00248-2.  ^ Miyoshi, N; Fujiki, Toshiyuki; Morita, Yoshimune (1999). "Palynology of a 250-m core from Lake Biwa: a 430,000-year record of glacial–interglacial vegetation change in Japan". Review of Palaeobotany and Palynology. 104 (3–4): 267–283. doi:10.1016/S0034-6667(98)00058-X.  ^ Prentice, I. Colin; Bartlein, Patrick J; Webb, Thompson (1991). "Vegetation and Climate Change in Eastern North America Since the Last Glacial Maximum". Ecology. 72 (6): 2038–2056. doi:10.2307/1941558. JSTOR 1941558.  ^ a b c Adams J.M. & Faure H. (1997) (eds.), QEN members. Review and Atlas of Palaeovegetation: Preliminary land ecosystem maps of the world since the Last Glacial Maximum Archived 16 January 2008 at the Wayback Machine.. Oak Ridge National Laboratory, TN, USA. ^ a b New, M., Todd, M., Hulme, M. and Jones, P. (December 2001). "Review: Precipitation measurements and trends in the twentieth century". International Journal of Climatology. 21 (15): 1889–1922. Bibcode:2001IJCli..21.1889N. doi:10.1002/joc.680. CS1 maint: Multiple names: authors list (link) ^ Dominic, F., Burns, S.J., Neff, U., Mudulsee, M., Mangina, A. and Matter, A. (April 2004). "Palaeoclimatic interpretation of high-resolution oxygen isotope profiles derived from annually laminated speleothems from Southern Oman". Quaternary Science Reviews. 23 (7–8): 935–945. Bibcode:2004QSRv...23..935F. doi:10.1016/j.quascirev.2003.06.019. CS1 maint: Multiple names: authors list (link) ^ Norris, Joel R.; Allen, Robert J.; Evan, Amato T.; Zelinka, Mark D.; O’Dell, Christopher W.; Klein, Stephen A. (4 August 2016). "Evidence for climate change in the satellite cloud record". Nature. 536 (7614): 72–75. Bibcode:2016Natur.536...72N. doi:10.1038/nature18273 – via  ^ Witze, Alexandra. "Clouds get high on climate change". doi:10.1038/nature.2016.20230.  ^ a b Huntington, T.G. (U.S. Geological Survey) (March 2006). "Evidence for intensification of the global water cycle: Review and synthesis". Journal of Hydrology. 319 (1–4): 83–95. Bibcode:2006JHyd..319...83H. doi:10.1016/j.jhydrol.2005.07.003.  ^ Smith, T. M.; Yin, X.; Gruber, A. (2006). "Variations in annual global precipitation (1979–2004), based on the Global Precipitation Climatology Project 2.5° analysis". Geophysical Research Letters. 33 (6). Bibcode:2006GeoRL..3306705S. doi:10.1029/2005GL025393.  ^ Dendroclimatology : progress and prospect. New York: Springer. 2010. ISBN 978-1-4020-4010-8.  ^ Coope, G.R.; Lemdahl, G.; Lowe, J.J.; Walkling, A. (1999-05-04). "Temperature gradients in northern Europe during the last glacial—Holocene transition(14–9 14 C kyr BP) interpreted from coleopteran assemblages". Journal of Quaternary Science. 13 (5): 419–433. Bibcode:1998JQS....13..419C. doi:10.1002/(SICI)1099-1417(1998090)13:5<419::AID-JQS410>3.0.CO;2-D. CS1 maint: Multiple names: authors list (link) ^ Ripple, W. J., Wolf C., Newsome T. M., Galetti M., Alamgir M., Crist E., Mahmoud M. I., Laurance W. F., & other scientist signatories +15 364 (2017). World Scientists’ Warning to Humanity: A Second Notice. BioScience. bix125. ^ FAO Fisheries Technical Paper. No. 410. Rome, FAO. 2001. Climate Change and Long-Term Fluctuations of Commercial Catches. United Nations Food and Agriculture Organization. ^ Brown, C. J., Fulton, E. A., Hobday, A. J., Matear, R. J., Possingham, H. P., Bulman, C., Christensen, V., Forrest, R. E., Gehrke, P. C., Gribble, N. A., Griffiths, S. P., Lozano-Montes, H., Martin, J. M., Metcalf, S., Okey, T. A., Watson, R. and Richardson, A. J. (April 2010). "Effects of climate-driven primary production change on marine food webs: Implications for fisheries and conservation". Global Change Biology. 16 (4): 1194–1212. doi:10.1111/j.1365-2486.2009.02046.x. CS1 maint: Multiple names: authors list (link) ^ "Sea Level Change". University of Colorado at Boulder. Retrieved 21 July 2009.  ^ Hansen, James. "Science Briefs: Earth's Climate History". NASA GISS. Retrieved 25 April 2013.  ^ "Singapore underwater". The Straits Times. Retrieved 2017-05-31.  ^ "How Singapore is responding to the threat of rising sea levels". The Straits Times. Retrieved 2017-05-31. 

References IPCC AR4 WG1 (2007). Solomon, S.; Qin, D.; Manning, M.; Chen, Z.; Marquis, M.; Averyt, K.B.; Tignor, M.; Miller, H.L., eds. Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press. ISBN 978-0-521-88009-1.  (pb: 978-0-521-70596-7). IPCC AR4 SYR (2007). Core Writing Team; Pachauri, R.K; Reisinger, A., eds. Climate Change 2007: Synthesis Report. Contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. IPCC. ISBN 92-9169-122-4. . IPCC TAR WG1 (2001). Houghton, J.T.; Ding, Y.; Griggs, D.J.; Noguer, M.; van der Linden, P.J.; Dai, X.; Maskell, K.; Johnson, C.A., eds. Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press. ISBN 0-521-80767-0. Archived from the original on 30 March 2016.  (pb: 0-521-01495-6).

Further reading IPCC AR4 WG1 (2007). "Summary for Policymakers". In Solomon, S.; Qin, D.; Manning, M.; Chen, Z.; Marquis, M.; Averyt, K. B.; Tignor, M.; Miller, H. L. Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press. ISBN 978-0-521-88009-1.  (pb: 978-0-521-70596-7). IPCC AR4 SYR (2007). "Summary for Policymakers". In Core Writing Team; Pachauri, R. K; Reisinger, A. Climate Change 2007: Synthesis Report. Contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. IPCC. ISBN 92-9169-122-4.  Emanuel, K. (August 2005). "Increasing destructiveness of tropical cyclones over the past 30 years" (PDF). Nature. 436 (7051): 686–8. Bibcode:2005Natur.436..686E. doi:10.1038/nature03906. PMID 16056221.  Edwards, Paul Geoffrey; Miller, Clark A. (2001). Changing the atmosphere: expert knowledge and environmental governance. Cambridge, Mass: MIT Press. ISBN 0-262-63219-5.  McKibben, Bill (2011). The Global Warming Reader. New York, N.Y.: OR Books. ISBN 978-1-935928-36-2.  Ruddiman, W. F. (2003). "The anthropogenic greenhouse era began thousands of years ago". Climate Change. 61 (3): 261–293. doi:10.1023/B:CLIM.0000004577.17928.fa.  Ruddiman, William F. (2005). Plows, plagues, and petroleum: how humans took control of climate. Princeton, N.J: Princeton University Press. ISBN 0-691-13398-0.  Ruddiman, W. F.; Vavrus, S. J.; Kutzbach, J. E. (2005). "A test of the overdue-glaciation hypothesis". Quaternary Science Reviews. 24 (11): 1–10. Bibcode:2005QSRv...24....1R. doi:10.1016/j.quascirev.2004.07.010.  Schelling, Thomas C. (2002). "Greenhouse Effect". In Henderson, David R. Concise Encyclopedia of Economics (1st ed.). Library of Economics and Liberty.  OCLC 317650570, 50016270, 163149563 Schmidt, G. A.; Shindel, D. T.; Harder, S. (2004). "A note of the relationship between ice core methane concentrations and insolation". Geophys. Res. Lett. 31 (23): L23206. Bibcode:2004GeoRL..3123206S. doi:10.1029/2004GL021083.  Wagner, Frederic H., ed. (2009). Climate Change in Western North America: Evidence and Environmental Effects. ISBN 978-0-87480-906-0. 

External links Wikiquote has quotations related to: Climate change Listen to this article (info/dl) This audio file was created from a revision of the article "Climate change" dated 2010-03-19, and does not reflect subsequent edits to the article. (Audio help) More spoken articles Wikinews has news related to: Climate change Wikimedia Commons has media related to Climate change. Climate Science Special Report – U.S. Global Change Research Program Climate Change at Curlie (based on DMOZ) Climate Change Resources from SourceWatch Climate Change from the UCB Libraries GovPubs Climate Change from the Met Office (UK) Global Climate Change Indicators from NOAA Global Climate Change from NASA (US) Global Carbon Dioxide Circulation (NASA; 13 December 2016) Climate Change: Evidence & Causes, from the Royal Society and the U.S. National Academy of Sciences Ocean Motion: Satellites Record Weakening North Atlantic Current Intergovernmental Panel on Climate Change (IPCC) United Nations University's 'Our World 2' Climate Change Video Briefs United Nations University's 'Our World 2' Indigenous voices on climate change films Climate Change on In Our Time at the BBC. Climate Change Performance Index 2010 Climate Library at Center for Ocean Solutions, Stanford University Climate Change: Coral Reefs on the Edge An online video presentation by Prof. Ove Hoegh-Guldberg, University of Auckland What We Know — The Reality, Risks and Response to Climate Change 2014 report, Am. Assn. for the Advancement of Science Climate change and forest genetic resources. Climate History Network Confronting the Realities of Climate Change Union of Concerned Scientists Equation: Human Impact on Climate Change (2017) & Yale University v t e Global warming and climate change Temperatures Brightness temperature Effective temperature Geologic record Hiatus Historical climatology Instrumental record Paleoclimatology Paleotempestology Proxy data Record of the past 1,000 years Satellite measurements Causes Anthropogenic Attribution of recent climate change Aviation Biofuel Black carbon Carbon dioxide Deforestation Earth's energy budget Earth's radiation balance Ecocide Fossil fuel Global dimming Global warming potential Greenhouse effect (Infrared window) Greenhouse gases (Halocarbons) Land use, land-use change and forestry Radiative forcing Tropospheric ozone Urban heat island Natural Albedo Bond events Climate oscillations Climate sensitivity Cloud forcing Cosmic rays Feedbacks Glaciation Global cooling Milankovitch cycles Ocean variability AMO ENSO IOD PDO Orbital forcing Solar variation Volcanism Models Global climate model History History of climate change science Atmospheric thermodynamics Svante Arrhenius James Hansen Charles David Keeling Opinion and climate change Environmental ethics Media coverage of climate change Public opinion on climate change (Popular culture) Scientific opinion on climate change Scientists opposing the mainstream assessment Climate change denial Global warming conspiracy theory By country & region (Africa Arctic Argentina Australia Bangladesh Belgium Canada China Europe European Union Finland Grenada Japan Luxembourg New Zealand Norway Russia Scotland South Korea Sweden Tuvalu United Kingdom United States) Politics Clean Power Plan Climate change denial (Manufactured controversy) Intergovernmental Panel on Climate Change (IPCC) March for Science People's Climate March United Nations Framework Convention on Climate Change (UNFCCC / FCCC) Global climate regime Potential effects and issues General Abrupt climate change Anoxic event Arctic dipole anomaly Arctic haze Arctic methane release Climate change and agriculture Climate change and ecosystems Climate change and poverty Current sea level rise Drought Economics of global warming Effect on plant biodiversity Effects on health Effects on humans Effects on marine mammals Environmental migrant Extinction risk from global warming Fisheries and climate change Forest dieback Industry and society Iris hypothesis Megadrought Ocean acidification Ozone depletion Physical impacts Polar stratospheric cloud Regime shift Retreat of glaciers since 1850 Runaway climate change Season creep Shutdown of thermohaline circulation By country Australia India Nepal (South Asia) United States Mitigation Kyoto Protocol Clean Development Mechanism Joint Implementation Bali Road Map 2009 United Nations Climate Change Conference Governmental European Climate Change Programme G8 Climate Change Roundtable United Kingdom Climate Change Programme Paris Agreement United States withdrawal Regional climate change initiatives in the United States List of climate change initiatives Emissions reduction Carbon credit Carbon-neutral fuel Carbon offset Carbon tax Emissions trading Fossil-fuel phase-out Carbon-free energy Carbon capture and storage Efficient energy use Low-carbon economy Nuclear power Renewable energy Personal Individual action on climate change Simple living Other Carbon dioxide removal Carbon sink Climate change mitigation scenarios Climate engineering Individual and political action on climate change Reducing emissions from deforestation and forest degradation Reforestation Urban reforestation Climate Action Plan Climate action Proposed adaptations Strategies Damming glacial lakes Desalination Drought tolerance Irrigation investment Rainwater storage Sustainable development Weather modification Programmes Avoiding dangerous climate change Land allocation decision support system Glossary of climate change Index of climate change articles Category:Climate change Category:Global warming Portal:Global warming v t e Global catastrophic risks Future of the Earth Ultimate fate of the universe Technological Grey goo Kinetic bombardment Mutual assured destruction Dead Hand Doomsday device Synthetic intelligence / Artificial intelligence Existential risk from artificial intelligence See Template AI takeover Technological singularity Transhumanism Sociological Malthusian catastrophe New World Order (conspiracy theory) Nuclear holocaust winter famine cobalt Societal collapse World War III Ecological Climate change Extinction risk from global warming Runaway climate change Ice age Ecocide Human impact on the environment See Template Ozone depletion Cascade effect Earth Overshoot Day Overexploitation Overpopulation Human overpopulation Biological Extinction Human extinction Genetic erosion Genetic pollution Dysgenics Pandemic Biological agent Transhumanism Physical Big Crunch Big Rip Coronal mass ejection Gamma-ray burst Impact event Potentially hazardous object Solar flare Supervolcano winter Mythological Eschatology Buddhist Christian Hindu Islamic Jewish Norse Zoroastrian 2012 phenomenon Armageddon Apocalypse End time Last Judgment List of dates predicted for apocalyptic events Fiction Alien invasion Apocalyptic and post-apocalyptic fiction List of apocalyptic and post-apocalyptic fiction Disaster films List of disaster films List of fictional doomsday devices Categories Apocalypticism Future problems Hazards Risk analysis Retrieved from "" Categories: Climate changeClimate and weather statisticsClimate historyCarbon financeEconomic problemsFuture problemsHidden categories: Pages with DOIs inactive since 2017Wikipedia articles needing page number citations from October 2011CS1 maint: Multiple names: authors listWebarchive template wayback linksWikipedia indefinitely semi-protected pagesUse dmy dates from November 2013Spoken articlesArticles with hAudio microformatsArticles with DMOZ linksUse dmy dates from July 2011Articles containing video clips

Navigation menu Personal tools Not logged inTalkContributionsCreate accountLog in Namespaces ArticleTalk Variants Views ReadView sourceView history More Search Navigation Main pageContentsFeatured contentCurrent eventsRandom articleDonate to WikipediaWikipedia store Interaction HelpAbout WikipediaCommunity portalRecent changesContact page Tools What links hereRelated changesUpload fileSpecial pagesPermanent linkPage informationWikidata itemCite this page Print/export Create a bookDownload as PDFPrintable version In other projects Wikimedia CommonsWikibooksWikinewsWikiversity Languages العربيةAsturianuAzərbaycancaবাংলাBân-lâm-gúБеларускаяभोजपुरीBikol CentralБългарскиBosanskiCatalàČeštinaCymraegDanskDeutschEestiΕλληνικάEspañolEsperantoEuskaraفارسیFøroysktFrançaisGaeilgeGalego한국어Հայերենहिन्दीHrvatskiIdoBahasa IndonesiaItalianoעבריתBasa Jawaಕನ್ನಡქართულიҚазақшаLatviešuLëtzebuergeschLietuviųMagyarമലയാളംBahasa Melayuမြန်မာဘာသာNederlandsनेपाली日本語NorskNorsk nynorskOccitanਪੰਜਾਬੀپنجابیپښتوPolskiPortuguêsРусскийScotsShqipසිංහලSimple EnglishSlovenčinaSlovenščinaSrpskohrvatski / српскохрватскиSuomiSvenskaTagalogதமிழ்ไทยTürkçeУкраїнськаTiếng ViệtWinaray粵語中文 Edit links This page was last edited on 10 December 2017, at 03:32. Text is available under the Creative Commons Attribution-ShareAlike License; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization. Privacy policy About Wikipedia Disclaimers Contact Wikipedia Developers Cookie statement Mobile view (window.RLQ=window.RLQ||[]).push(function(){mw.config.set({"wgPageParseReport":{"limitreport":{"cputime":"1.084","walltime":"1.314","ppvisitednodes":{"value":8375,"limit":1000000},"ppgeneratednodes":{"value":0,"limit":1500000},"postexpandincludesize":{"value":381660,"limit":2097152},"templateargumentsize":{"value":18558,"limit":2097152},"expansiondepth":{"value":15,"limit":40},"expensivefunctioncount":{"value":6,"limit":500},"entityaccesscount":{"value":1,"limit":400},"timingprofile":["100.00% 1090.393 1 -total"," 57.98% 632.252 1 Template:Reflist"," 28.07% 306.050 62 Template:Cite_journal"," 9.23% 100.618 17 Template:Cite_book"," 8.02% 87.460 25 Template:Cite_web"," 4.16% 45.381 1 Template:Global_warming"," 4.02% 43.806 1 Template:Page_needed"," 3.93% 42.878 1 Template:Navbox_with_collapsible_groups"," 3.85% 42.009 1 Template:Fix"," 3.03% 33.022 1 Template:Pp-semi-indef"]},"scribunto":{"limitreport-timeusage":{"value":"0.577","limit":"10.000"},"limitreport-memusage":{"value":7063189,"limit":52428800}},"cachereport":{"origin":"mw1313","timestamp":"20171210033217","ttl":1900800,"transientcontent":false}}});});(window.RLQ=window.RLQ||[]).push(function(){mw.config.set({"wgBackendResponseTime":97,"wgHostname":"mw1188"});});

Climate_change - Photos and All Basic Informations

Climate_change More Links

This Article Is Semi-protected.Listen To This ArticleGlobal WarmingPaleoclimatologyGeologic Temperature RecordAtmospheric SciencesAtmospheric PhysicsSynoptic Scale MeteorologyCategory:Atmospheric DynamicsAtmospheric ChemistryCategory:Atmospheric ChemistryMeteorologyWeatherCategory:WeatherPortal:WeatherTropical CycloneCategory:Tropical CyclonesClimatologyClimateCategory:ClimateCategory:Climate ChangeGlobal WarmingCategory:Global WarmingPortal:Global WarmingTemplate:Atmospheric SciencesTemplate Talk:Atmospheric SciencesWeatherSunlightPlate TectonicsVolcanic EruptionsGlobal WarmingScientistClimateProxy (climate)BoreholeIce CoreFloraFaunaPeriglaciationGeneral Circulation ModelOutline Of Physical ScienceCentral TendencyStatistical VariabilityEl NiñoGlobal WarmingEnvironmental PolicyHuman Impact On The EnvironmentGlobal WarmingGreenhouse GasWorld Meteorological OrganizationIntergovernmental Panel On Climate ChangeUN Framework Convention On Climate ChangeAttribution Of Recent Climate ChangeSunClimate ForcingSolar RadiationAlbedoOrogenyContinental DriftGreenhouse GasClimate FeedbackEcological ThresholdThermohaline CirculationVolcanic AshThermal ExpansionAlbedoEarth's AtmosphereHydrosphereCryosphereLithosphereBiosphereThermohaline CirculationClimate InertiaEnlargePacific Decadal OscillationEl Niño-Southern OscillationPacific Decadal OscillationAtlantic Multidecadal OscillationAtmosphere Of EarthVolumetric Heat CapacityLittle Ice AgeEnlargeThermohaline CirculationAntarctic Circumpolar CurrentCarbon CycleWater CycleAlbedoEvapotranspirationCloudWeatheringGlaciationPhotosynthesisLigninDetritusCarbon SinkCoalPaleocene-Eocene Thermal MaximumPhytoplanktonAzolla EventGlobal CoolingEcosystemCO2Vostok, AntarcticaMilankovitch CyclesOrbital EccentricityAxial TiltPrecessionMilankovitch CyclesGlacial PeriodInterglacial PeriodSaharaCyclostratigraphyGeologic RecordIPCCCO2Thermal InertiaSolar VariationEnlargeSunspotBerylliumMaunder MinimumSunEnergyGeothermalHistory Of The EarthHadeanArcheanFaint Young Sun ParadoxGreat Oxygenation EventRed GiantWhite DwarfSolar VariationSolar CycleModulationSpörer MinimumMaunder MinimumMaunder MinimumAnno DominiRadiative ForcingCERNNature (journal)CLOUDCosmic RayEnlargeMicrowave Sounding UnitNASAAerosolsEl ChichónPinatuboEl Niño-Southern OscillationVolcanoTonSulfur DioxideStratosphereSulfuric AcidMount PinatuboMount TamboraYear Without A SummerLarge Igneous ProvinceFlood BasaltMass ExtinctionPrediction Of Volcanic ActivityClimate ModelCarbon CycleCarbon Dioxide SinkUS Geological SurveySupervolcanoToba Catastrophe TheoryPlate TectonicsIsthmus Of PanamaAtlanticPacificWestern Boundary CurrentGulf StreamCarboniferousSupercontinentPangaeaIslandEnlargeGlobal WarmingScientific Opinion On Climate ChangeComplex SystemUnited States National Research CouncilFossil FuelParticulateCementOzone DepletionRuminantCattleMethaneTermiteDeforestationMicroclimateEnlargeGlobal WarmingNASANOAANASANOAAEnlargeMonsoonADNational Science FoundationEnlargeNASAProxy (climate)VegetationIce CoreDendrochronologySea Level ChangeGlacial GeologyInstrumental Temperature RecordRadiosondeSatellite Temperature MeasurementsOxygen Isotope Ratio CycleHistorical Impacts Of Climate ChangeArchaeologicalOral HistoryHistorical DocumentsEnlargeGlacierMass BalanceRetreat Of Glaciers Since 1850Glacier Mass BalancePlioceneInterglacialHoloceneMilankovitch CyclesContinental ClimateHeinrich EventDansgaard–Oeschger EventYounger DryasOrbital ForcingMoraineTephrochronologyTephraNASAAntarcticaGreenlandArctic Sea Ice DeclineClimate Change In The ArcticArcticSouthern OceanEnlargeDesertificationCarboniferous Rainforest CollapseForest Genetic ResourcesForest Genetic ResourcesForest Reproductive MaterialPalynologyPalynomorphPollenQuaternary GlaciationLast Glacial MaximumEnlargeAridAtlantic PeriodCloudPrecipitationInterpolationLast Glacial MaximumEvaporationPolar DesertAtlantic PeriodEl Niño-Southern OscillationDendroclimatologyEnlargeGlacial PeriodInterglacialIce AgeΔ18OIce SheetAntarctic Ice SheetBeetleFishPrimary ProductivityAutotrophsSea LevelSea Level RiseEnlargeTide GaugeAltimeterSatelliteCoral ReefMarine TerraceOoidsLimestoneUranium-thorium DatingRadiocarbon DatingCosmogenic Radionuclide DatingPliocenePortal:EnvironmentPortal:Global WarmingPortal:EnergyAbrupt Climate ChangeBlue CarbonClimate Change In Popular CultureGeologic Time ScaleHomogenization (climate)Solar CycleTemperature RecordBond EventIce AgePaleocene–Eocene Thermal MaximumPermo-CarboniferousSnowball EarthAnthropoceneCORA DatasetEffects Of Global Warming On OceansExtreme WeatherHardiness ZoneHolocene Climatic OptimumLand Surface Effects On ClimateMedieval Warm PeriodTemperature Record Of The Past 1000 YearsInternational Standard Book NumberSpecial:BookSources/0-309-14588-0International Standard Book NumberSpecial:BookSources/1611973228Intergovernmental Panel On Climate ChangeIntergovernmental Panel On Climate ChangeBibcodeDigital Object IdentifierInternational Standard Serial NumberPubMed CentralPubMed IdentifierDigital Object IdentifierInternational Standard Serial NumberBibcodeDigital Object IdentifierInternational Standard Serial NumberBibcodeDigital Object IdentifierInternational Standard Serial NumberBibcodeDigital Object IdentifierInternational Standard Serial NumberBibcodeDigital Object IdentifierInternational Standard Serial NumberNational Oceanic And Atmospheric AdministrationBibcodeDigital Object IdentifierPubMed IdentifierBibcodeDigital Object IdentifierPubMed IdentifierBibcodeDigital Object IdentifierBibcodeDigital Object IdentifierPubMed CentralPubMed IdentifierBibcodeDigital Object IdentifierPubMed IdentifierBibcodeDigital Object IdentifierBibcodeDigital Object IdentifierPubMed CentralPubMed IdentifierBibcodeDigital Object IdentifierPubMed IdentifierDigital Object IdentifierDigital Object IdentifierPubMed IdentifierBibcodeDigital Object IdentifierPubMed IdentifierBibcodeDigital Object IdentifierBibcodeDigital Object IdentifierBibcodeDigital Object IdentifierBibcodeDigital Object IdentifierBibcodeDigital Object IdentifierPubMed IdentifierBibcodeDigital Object IdentifierBibcodeDigital Object IdentifierPubMed IdentifierBibcodeDigital Object IdentifierBibcodeDigital Object IdentifierInternational Standard Book NumberSpecial:BookSources/0-309-05148-7NASABibcodeDigital Object IdentifierBibcodeDigital Object IdentifierBibcodeDigital Object IdentifierInternational Standard Serial NumberPubMed IdentifierDigital Object IdentifierDigital Object IdentifierUnited States Geological SurveyDigital Object IdentifierBibcodeDigital Object IdentifierBibcodeDigital Object IdentifierAmerican Geophysical UnionWikipedia:Citing SourcesBibcodeDigital Object IdentifierNASAWoods Hole Oceanographic InstitutionBibcodeDigital Object IdentifierBibcodeDigital Object IdentifierJSTORInternational Standard Book NumberSpecial:BookSources/0-309-14588-0Reto KnuttiBibcodeDigital Object IdentifierPubMed CentralPubMed IdentifierNew York TimesNASANature (journal)BibcodeDigital Object IdentifierScience (journal)BibcodeDigital Object IdentifierPubMed IdentifierBibcodeDigital Object IdentifierEcosystemsDigital Object IdentifierCategory:CS1 Maint: Multiple Names: Authors ListCategory:CS1 Maint: Multiple Names: Authors ListDigital Object IdentifierBibcodeDigital Object IdentifierDigital Object IdentifierDigital Object IdentifierJSTORWayback MachineBibcodeDigital Object IdentifierCategory:CS1 Maint: Multiple Names: Authors ListBibcodeDigital Object IdentifierCategory:CS1 Maint: Multiple Names: Authors ListBibcodeDigital Object IdentifierDigital Object IdentifierBibcodeDigital Object IdentifierBibcodeDigital Object IdentifierInternational Standard Book NumberSpecial:BookSources/978-1-4020-4010-8Journal Of Quaternary ScienceBibcodeDigital Object IdentifierCategory:CS1 Maint: Multiple Names: Authors ListDigital Object IdentifierCategory:CS1 Maint: Multiple Names: Authors ListIPCCIPCC Fourth Assessment ReportInternational Standard Book NumberSpecial:BookSources/978-0-521-88009-1Special:BookSources/978-0-521-70596-7IPCCIPCC Fourth Assessment ReportInternational Standard Book NumberSpecial:BookSources/92-9169-122-4IPCCIPCC Third Assessment ReportInternational Standard Book NumberSpecial:BookSources/0-521-80767-0Special:BookSources/0-521-01495-6IPCCIPCC Fourth Assessment ReportInternational Standard Book NumberSpecial:BookSources/978-0-521-88009-1Special:BookSources/978-0-521-70596-7IPCCIPCC Fourth Assessment ReportInternational Standard Book NumberSpecial:BookSources/92-9169-122-4BibcodeDigital Object IdentifierPubMed IdentifierInternational Standard Book NumberSpecial:BookSources/0-262-63219-5OR BooksInternational Standard Book NumberSpecial:BookSources/978-1-935928-36-2Digital Object IdentifierInternational Standard Book NumberSpecial:BookSources/0-691-13398-0BibcodeDigital Object IdentifierThomas SchellingDavid R. HendersonConcise Encyclopedia Of EconomicsLibrary Of Economics And LibertyOCLCBibcodeDigital Object IdentifierInternational Standard Book NumberSpecial:BookSources/978-0-87480-906-0File:En-Climate Change.oggWikipedia:Media HelpWikipedia:Spoken ArticlesDMOZSourceWatchMet OfficeNOAANASANASARoyal SocietyU.S. National Academy Of SciencesIn Our Time (radio Series)BBCAmerican Association For The Advancement Of ScienceTemplate:Global WarmingTemplate Talk:Global WarmingGlobal WarmingBrightness TemperatureEffective TemperatureGeologic Temperature RecordGlobal Warming HiatusHistorical ClimatologyInstrumental Temperature RecordPaleoclimatologyPaleotempestologyProxy (climate)Temperature Record Of The Past 1000 YearsSatellite Temperature MeasurementsGlobal WarmingAttribution Of Recent Climate ChangeEnvironmental Impact Of AviationBiofuelBlack CarbonCarbon DioxideGlobal Warming And DeforestationEarth's Energy BudgetEarth's Energy BudgetEcocideFossil FuelGlobal DimmingGlobal Warming PotentialGreenhouse EffectInfrared WindowGreenhouse GasHalocarbonLand Use, Land-use Change And ForestryRadiative ForcingTropospheric OzoneUrban Heat IslandNatural EnvironmentAlbedoBond EventClimate OscillationClimate SensitivityCloud ForcingCosmic RayClimate Change FeedbackGlacial PeriodGlobal CoolingMilankovitch CyclesThermohaline CirculationAtlantic Multidecadal OscillationEl Niño-Southern OscillationIndian Ocean DipolePacific Decadal OscillationOrbital ForcingSolar VariationVolcanismClimate ModelGlobal Climate ModelHistory Of Climate Change ScienceAtmospheric ThermodynamicsSvante ArrheniusJames HansenCharles David KeelingEnvironmental EthicsMedia Coverage Of Climate ChangePublic Opinion On Climate ChangeClimate Change In Popular CultureScientific Opinion On Climate ChangeList Of Scientists Opposing The Mainstream Scientific Assessment Of Global WarmingClimate Change DenialGlobal Warming Conspiracy TheoryClimate Change Opinion By CountryClimate Change In AfricaClimate Change In The ArcticClimate Change In ArgentinaClimate Change In AustraliaClimate Change In BangladeshClimate Change In BelgiumClimate Change In CanadaClimate Change In ChinaClimate Change In EuropeClimate Change In The European UnionClimate Change In FinlandClimate Change In GrenadaClimate Change In JapanClimate Change In LuxembourgClimate Change In New ZealandClimate Change In NorwayClimate Change In RussiaClimate Change In ScotlandClimate Change In South KoreaClimate Change In SwedenClimate Change In TuvaluClimate Change In The United KingdomClimate Change In The United StatesPolitics Of Global WarmingClean Power PlanClimate Change DenialManufactured ControversyIntergovernmental Panel On Climate ChangeMarch For SciencePeople's Climate MarchUnited Nations Framework Convention On Climate ChangeGlobal Climate RegimeEffects Of Global WarmingAbrupt Climate ChangeAnoxic EventArctic Dipole AnomalyArctic HazeArctic Methane ReleaseClimate Change And AgricultureClimate Change And EcosystemsClimate Change And PovertyCurrent Sea Level RiseDroughtEconomics Of Global WarmingEffect Of Climate Change On Plant BiodiversityEffects Of Global Warming On Human HealthEffects Of Climate Change On HumansEffects Of Climate Change On Marine MammalsEnvironmental MigrantExtinction Risk From Global WarmingFisheries And Climate ChangeForest DiebackClimate Change, Industry And SocietyIris HypothesisMegadroughtOcean AcidificationOzone DepletionPhysical Impacts Of Climate ChangePolar Stratospheric CloudRegime ShiftRetreat Of Glaciers Since 1850Runaway Climate ChangeSeason CreepShutdown Of Thermohaline CirculationEffects Of Global Warming On AustraliaEffects Of Global Warming On IndiaClimate Change Adaptation In NepalEffects Of Global Warming On South AsiaNational Climate AssessmentClimate Change MitigationKyoto ProtocolClean Development MechanismJoint ImplementationBali Road Map2009 United Nations Climate Change ConferenceEuropean Climate Change ProgrammeG8 Climate Change RoundtableUnited Kingdom Climate Change ProgrammeParis AgreementUnited States Withdrawal From The Paris AgreementRegional Climate Change Initiatives In The United StatesList Of Climate Change InitiativesCarbon CreditCarbon-neutral FuelCarbon OffsetCarbon TaxEmissions TradingFossil-fuel Phase-outCarbon Capture And StorageEfficient Energy UseLow-carbon EconomyNuclear PowerRenewable EnergyIndividual Action On Climate ChangeSimple LivingCarbon Dioxide RemovalCarbon SinkClimate Change Mitigation ScenariosClimate EngineeringIndividual And Political Action On Climate ChangeReducing Emissions From Deforestation And Forest DegradationReforestationUrban ReforestationClimate Action PlanClimate ActionAdaptation To Global WarmingDamGlacial LakeDesalinationDrought ToleranceIrrigationRainwater TankSustainable DevelopmentWeather ModificationAvoiding Dangerous Climate ChangeLand Allocation Decision Support SystemGlossary Of Climate ChangeIndex Of Climate Change ArticlesCategory:Climate ChangeCategory:Global WarmingPortal:Global WarmingTemplate:DoomsdayTemplate Talk:DoomsdayGlobal Catastrophic RiskFuture Of EarthUltimate Fate Of The UniverseGrey GooKinetic BombardmentMutual Assured DestructionDead HandDoomsday DeviceSynthetic IntelligenceArtificial IntelligenceExistential Risk From Artificial General IntelligenceTemplate:Existential Risk From Artificial IntelligenceAI TakeoverTechnological SingularityTranshumanismMalthusian CatastropheNew World Order (conspiracy Theory)Nuclear HolocaustNuclear WinterNuclear FamineCobalt BombSocietal CollapseWorld War IIIExtinction Risk From Global WarmingRunaway Climate ChangeIce AgeEcocideHuman Impact On The EnvironmentTemplate:Human Impact On The EnvironmentOzone DepletionCascade Effect (ecology)Earth Overshoot DayOverexploitationOverpopulationHuman OverpopulationExtinctionHuman ExtinctionGenetic ErosionGenetic PollutionDysgenicsPandemicBiological AgentTranshumanismBig CrunchBig RipCoronal Mass EjectionGamma-ray BurstImpact EventPotentially Hazardous ObjectSolar FlareSupervolcanoVolcanic WinterEschatologyBuddhist EschatologyChristian EschatologyHindu EschatologyIslamic EschatologyJewish EschatologyRagnarökFrashokereti2012 PhenomenonArmageddonApocalypseEnd TimeLast JudgmentList Of Dates Predicted For Apocalyptic EventsAlien InvasionApocalyptic And Post-apocalyptic FictionList Of Apocalyptic And Post-apocalyptic FictionDisaster FilmList Of Disaster FilmsList Of Fictional Doomsday DevicesCategory:ApocalypticismCategory:Future ProblemsCategory:HazardsCategory:Risk AnalysisHelp:CategoryCategory:Climate ChangeCategory:Climate And Weather StatisticsCategory:Climate HistoryCategory:Carbon FinanceCategory:Economic ProblemsCategory:Future ProblemsCategory:Pages With DOIs Inactive Since 2017Category:Wikipedia Articles Needing Page Number Citations From October 2011Category:CS1 Maint: Multiple Names: Authors ListCategory:Webarchive Template Wayback LinksCategory:Wikipedia Indefinitely Semi-protected PagesCategory:Use Dmy Dates From November 2013Category:Spoken ArticlesCategory:Articles With HAudio MicroformatsCategory:Articles With DMOZ LinksCategory:Use Dmy Dates From July 2011Category:Articles Containing Video ClipsDiscussion About Edits From This IP Address [n]A List Of Edits Made From This IP Address [y]View The Content Page [c]Discussion About The Content Page [t]This Page Is Protected. You Can View Its Source [e]Visit The Main Page [z]Guides To Browsing WikipediaFeatured Content – The Best Of WikipediaFind Background Information On Current EventsLoad A Random Article [x]Guidance On How To Use And Edit WikipediaFind Out About WikipediaAbout The Project, What You Can Do, Where To Find ThingsA List Of Recent Changes In The Wiki [r]List Of All English Wikipedia Pages Containing Links To This Page [j]Recent Changes In Pages Linked From This Page [k]Upload Files [u]A List Of All Special Pages [q]Wikipedia:AboutWikipedia:General Disclaimer

view link view link view link view link view link